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Abstract

The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctua-

tions into macroscopic hydrodynamics by using stochastic fluxes. This paper examines

explicit Eulerian discretizations of the full LLNS equations. Several CFD approaches

are considered (including MacCormack’s two-step Lax-Wendroff scheme and the Piece-

wise Parabolic Method) and are found to give good results (about 10% error) for the

variances of momentum and energy fluctuations. However, neither of these schemes

accurately reproduces the density fluctuations. We introduce a conservative centered

scheme with a third-order Runge-Kutta temporal integrator that does accurately pro-

duce density fluctuations. A variety of numerical tests, including the random walk

of a standing shock wave, are considered and results from the stochastic LLNS PDE

solver are compared with theory, when available, and with molecular simulations using

a Direct Simulation Monte Carlo (DSMC) algorithm.

1



1 Introduction

Thermal fluctuations have long been a central topic of statistical mechanics, dating back

to the light scattering predictions of Rayleigh (i.e., why the sky is blue) and the theory of

Brownian motion of Einstein and Smoluchowski [1]. More recently, the study of fluctuations

is an important topic in fluid mechanics due to the current interest in nanoscale flows, with

applications ranging from micro-engineering [2, 3, 4] to molecular biology [5, 6, 7].

Microscopic fluctuations constantly drive a fluid from its mean state, making it pos-

sible to probe the transport properties by fluctuation-dissipation. This is the basis for light

scattering in physical experiments and Green-Kubo analysis in molecular simulations. Fluc-

tuations are dynamically important for fluids undergoing phase transitions, nucleation, hy-

drodynamic instabilities, combustive ignition, etc., since the nonlinearities can exponentially

amplify the effect of the fluctuations.

In molecular biology, the importance of fluctuations can be appreciated by noting

that a typical molecular motor protein consumes ATP at a power of roughly 10−16 watts

while operating in a background of 10−8 watts of thermal noise power, which is likened to

be “as difficult as walking in a hurricane is for us” [6]. While the randomizing property

of fluctuations would seem to be unfavorable for the self-organization of living organisms,

Nature has found a way to exploit these fluctuations at the molecular level. The second

law of thermodynamics does not allow motor proteins to extract work from equilibrium

fluctuations, yet the thermal noise actually assists the directed motion of the protein by

providing the mechanism for overcoming potential barriers.

Following Nature’s example, there is interest in the fabrication of nano-scale devices

powered by [8] or constructed using [9] so-called “Brownian motors.” Another application

is in micro-total-analytical systems (µTAS) or “lab-on-a-chip” systems that promise single-

molecule detection and analysis [10]. Specifically, the Brownian ratchet mechanism has been

demonstrated to be useful for biomolecular separation [11, 12] and simple mechanisms for
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creating heat engines driven by non-equilibrium fluctuations have been proposed [13, 14].

Finally, exothermic reactions, such as in combustion and explosive detonation, can depend

strongly on the nature of thermal fluctuations [15, 16].

To incorporate thermal fluctuations into macroscopic hydrodynamics, Landau and

Lifshitz introduced an extended form of the Navier-Stokes equations by adding stochastic

flux terms [17]. The Landau-Lifshitz Navier-Stokes (LLNS) equations may be written as

Ut +∇ · F = ∇ ·D +∇ · S (1)

where

U =




ρ

J

E




(2)

is the vector of conserved quantities (density of mass, momentum and energy). The hyper-

bolic flux is given by

F =




ρv

ρv · v + P I

vE + Pv




(3)

and the diffusive flux is given by

D =




0

τ

τ · v + κ∇T




, (4)

where v is the fluid velocity, P is the pressure, T is the temperature, and τ = η(∇v +

∇vT − 2
3
I∇ · v) is the stress tensor. Here η and κ are coefficients of viscosity and thermal

conductivity, respectively, where we have assumed the bulk viscosity is zero.

The mass flux is microscopically exact but the other two flux components are not;

for example, at molecular scales heat may spontaneously flow from cold to hot, in violation

of the macroscopic Fourier law. To account for such spontaneous fluctuations, the LLNS
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equations include a stochastic flux

S =




0

S
Q+ v · S




, (5)

where the stochastic stress tensor S and heat flux Q have zero mean and covariances given

by

〈Sij(r, t)Sk`(r
′, t′)〉 = 2kBηT

(
δK
ikδK

j` + δK
i` δK

jk − 2
3
δK
ij δK

k`

)
δ(r− r′)δ(t− t′), (6)

〈Qi(r, t)Qj(r
′, t′)〉 = 2kBκT 2δK

ij δ(r− r′)δ(t− t′), (7)

and

〈Sij(r, t)Qk(r
′, t′)〉 = 0, (8)

where kB is Boltzmann’s constant. The LLNS equations have been derived by a variety of

approaches (see [17, 18, 19, 20]) and have even been extended to relativistic hydrodynam-

ics [21]. While they were originally developed for equilibrium fluctuations (see Appendix A),

specifically the Rayleigh and Brillouin spectral lines in light scattering, the validity of the

LLNS equations for non-equilibrium systems has been derived [22] and verified in molecular

simulations [23, 24].

In this paper we investigate a variety of numerical schemes for solving the LLNS equa-

tions. For simplicity, we restrict our attention to one-dimensional systems, so (1) simplifies

to

∂

∂t




ρ

J

E




= − ∂

∂x




ρu

ρu2 + P

(E + P )u




+
∂

∂x




0

4
3
η∂xu

4
3
ηu∂xu− κ∂xT




+
∂

∂x




0

s

q + us




(9)

where

〈s(x, t)s(x′, t′)〉 =
1

σ2

∫
dy

∫
dy′

∫
dz

∫
dz′〈Sxx(r, t)Sxx(r

′, t′)〉

=
8kBηT

3σ
δ(x− x′)δ(t− t′) (10)
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and

〈q(x, t)q(x′, t′)〉 =
1

σ2

∫
dy

∫
dy′

∫
dz

∫
dz′〈Qx(r, t)Qx(r

′, t′)〉

=
2kBκT 2

σ
δ(x− x′)δ(t− t′) (11)

with σ being the surface area of the system in the yz-plane.

Furthermore, we take the fluid to be a dilute gas with equation of state P = ρRT

and energy density E = cvρT + 1
2
ρu2. The transport coefficients are only functions of

temperature; for example, for a hard sphere gas η = η0

√
T and κ = κ0

√
T , where η0 and κ0

are constants. The numerical schemes developed in this paper may readily be formulated for

other fluids. Our choice is motivated by a desire to compare with molecular simulations (see

Appendix B) of a monatomic, hard sphere gas (for which R = kB/m and cv = R
γ−1

where m

is the mass of a particle and the ratio of specific heats is γ = 5
2
).

Several numerical approaches for the Landau-Lifshitz Navier-Stokes (LLNS) equa-

tions, and related stochastic hydrodynamic equations, have been proposed. The most suc-

cessful is a stochastic lattice-Boltzmann model developed by Ladd for simulating solid-fluid

suspensions [25]. This approach for modeling the Brownian motion of particles was adopted

by Sharma and Patankar [26] using a finite difference scheme that incorporates a stochastic

momentum flux into the incompressible Navier-Stokes equations. By including the stochastic

stress tensor of the LLNS equations into the lubrication equations Moseler and Landman [27]

obtain good agreement with their molecular dynamics simulation in modeling the breakup

of nanojets. An alternative mesoscopic approach to computational fluid dynamics, based

on a stochastic description defined by a discrete master equation, is proposed by Breuer

and Petruccione [28, 29]. They show that the structure of the resulting system recovers the

fluctuations of LLNS.

Serrano and Español [30] describe a finite volume Lagrangian discretization of the

continuum equations of hydrodynamics using Voronoi tessellation. Casting their model into

the GENERIC structure [31] allows for the introduction of thermal fluctuations yielding a
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consistent discrete model for Lagrangian fluctuating hydrodynamics. Fabritiis et al. [32, 33]

derive a similar mesoscopic, Voronoi-based algorithm using the dissipative particle dynamics

(DPD) method. The dissipative particles follow the dynamics of extended objects subject

to hydrodynamic forces, with stresses and heat fluxes given by the LLNS equations.

In earlier work Garcia, et al. [34] developed a simple finite difference scheme for the

linearized LLNS equations. Though successful, that scheme was custom-designed to solve a

specific problem; it cannot be extended readily, since it relies on special assumptions of zero

net flow and constant heat flux and would be unstable in the more general case. Related

finite difference schemes have been demonstrated for the diffusion equation [35], the “train”

model [36], and the stochastic Burgers’ equation [37], specifically in the context of Adaptive

Mesh and Algorithm Refinement hybrids that couple particle and continuum algorithms.

In the next section we develop three stochastic PDE schemes based on standard CFD

schemes for compressible flow. The schemes are tested in a variety of scenarios in sections

3 and 4, measuring spatial and time correlations at equilibrium and away from equilibrium.

Results are compared to theoretically derived values, and also to results from DSMC particle

simulations (see Appendix B). We also examine the influence of fluctuations on shock drift,

comparing results from the LLNS solver with DSMC simulations. The concluding section

summarizes the results and discusses future work, with an emphasis on the issues related to

using the resulting methodology as the foundation for a hybrid algorithm.

2 Numerical Methods

The goal here is to develop an Eulerian discretization of the full LLNS equations, representing

an extension of the approach discussed in [37] to compressible flow. We restrict consideration

here to finite-volume schemes in which all of the variables are collocated, so that the resulting

method can form the basis of a hybrid method in which a particle description (DSMC)

is coupled to the LLNS discretization. Within this class of discretizations, our aim is to
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recover the correct fluctuating statistics. In this section we develop two methods based on

CFD schemes that are commonly used for the Navier-Stokes equations. We then introduce

a specialized centered scheme designed to capture fluctuation intensities.

2.1 MacCormack Scheme

Based on the success of the simple second-order scheme in [34], we first consider MacCor-

mack’s variant of two-step Lax-Wendroff for solving fluctuating LLNS.1 The MacCormack

method is applied in the following way:

U∗
j = Un

j −
∆t

∆x

(
Fn

j − Fn
j−1

)
+

∆t

∆x

(
Dn

j+1/2 −Dn
j−1/2

)

+
∆t

∆x

(
Sn

j+1/2 − Sn
j−1/2

)

U∗∗
j = U∗

j −
∆t

∆x

(
F∗j+1 − F∗j

)
+

∆t

∆x

(
D∗

j+1/2 −D∗
j−1/2

)

+
∆t

∆x

(
S∗j+1/2 − S∗j−1/2

)

Un+1
j =

1

2

(
Un

j + U∗∗
j

)
.

Here Dn
j+1/2 is a simple finite difference approximation to D.

Straightforward evaluation of S would be

Sj+1/2 =




0

sj+1/2

qj+1/2 + uj+1/2sj+1/2




, (12)

but we will see that some adjustment must be made. The approximation to the stochastic

stress tensor, sj+1/2, is computed as

sn
j+1/2 =

√
4kB

3∆tVc

(ηj+1Tj+1 + ηjTj) <n
j+1/2 (13)

where Vc is the volume of a cell and the <’s are independent, Gaussian distributed random

values with zero mean and unit variance. The approximation to the discretized stochastic

1A standard version of two-step Lax-Wendroff was also considered with similar but slightly poorer results.
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heat flux, qj+1/2, is evaluated as

qn
j+1/2 =

√
kB

∆tVc

(κj+1(Tj+1)2 + κj(Tj)2) <n
j+1/2. (14)

These same stochastic flux approximations are used in all the continuum methods presented

here.

The stochastic components of the flux, S`
j+1/2, are independent, identically distributed

Gaussian random variables with mean zero and variance σ2 for ` = n, ∗. Substituting this

into the MacCormack scheme we find that the variance in the flux at j + 1/2 is given by

〈
δ

(
1

2
Sn +

1

2
S∗

)2
〉

=

(
1

2

)2 〈
δ (Sn)2〉 +

(
1

2

)2 〈
δ (S∗)2〉

=

(
1

2

) 〈
δ (Sn)2〉

=
σ2

2
.

That is, the variance in the flux is reduced to half its original magnitude by the

averaging used in the two-step MacCormack algorithm. We correct this effect by replacing

Sj+1/2 with S̃j+1/2 =
√

2Sj+1/2. The MacCormack method we use is

U∗
j = Un

j −
∆t

∆x

(
Fn

j − Fn
j−1

)
+

∆t

∆x

(
Dn

j+1/2 −Dn
j−1/2

)

+
∆t

∆x

(
S̃n

j+1/2 − S̃n
j−1/2

)

U∗∗
j = U∗

j −
∆t

∆x

(
F∗j+1 − F∗j

)
+

∆t

∆x

(
D∗

j+1/2 −D∗
j−1/2

)

+
∆t

∆x

(
S̃∗j+1/2 − S̃∗j−1/2

)

Un+1
j =

1

2

(
Un

j + U∗∗
j

)
.

2.2 Piecewise Parabolic Method

In [37] a piecewise linear second-order Godunov scheme was shown to be effective for solv-

ing the fluctuating Burgers’ equation. We considered two versions of higher-order Godunov
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methods for the LLNS, a piecewise linear version [38] and the Piecewise Parabolic Method

(PPM) introduced in [39]. The PPM algorithm, based on the direct Eulerian version pre-

sented in [40], produced considerably better results than the piecewise linear scheme. Since

our goal is to preserve fluctuations, we do not limit slopes and we do not include discontinuity

detection in the algorithm.

For this scheme the hyperbolic terms of the LLNS equations are considered in terms

of hydrodynamic and local characteristic variables. In hydrodynamic variables we have

∂

∂t
V + A

∂

∂x
V = 0, (15)

where

Vj =




ρj

uj

Pj




. (16)

The local characteristic variables are interpolated via a fourth-order scheme to the

left (−) and right (+) edges of each cell:

Wn
j,± =

7

12
(LjVj + LjVj±1)− 1

12
(LjVj∓1 + LjVj±2), (17)

where Lj is the matrix whose rows are the left eigenvectors of A evaluated at Vj.

These values, together with the cell-centered value Wn
j = LjVj, are used to construct

a parabolic profile Wj,k(θ) for each characteristic variable k in each cell,

W(θ) = Wj,− + θ∆Wj + θ(1− θ)Wj6, (18)

where

θ =
x− (j − 1

2
)∆x

∆x
,

∆Wn
j = Wn

j,+ −Wn
j,−, and

Wn
j6 = 6(Wn

j −
1

2
(Wn

j,+ + Wn
j,−)).
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Time-centered updates are based on the sign of each local characteristic wavespeed,

λj,k:

W
n+1/2
j,±,k =





1
νj,k

∫ ± 1
2

± 1
2
−νj,k

Wj,k(θ) dθ, ±λj,k > 0

Wn
j,±,k otherwise

where νj,k = λj,k
∆t
∆x

.

Finally, the time-centered values are transformed back into primitive variables and

used as inputs to a Riemann problem at each cell edge. We use the approximate Riemann

solver discussed in [41]. This approach iterates the phase space solution in the u− p plane,

approximating the rarefaction curves by the Hugoniot locus. The overall approach is able

to handle strong discontinuities and is second-order in wave strength.

Approximations to the viscous and stochastic flux terms are discussed in section 2.1.

For our PPM algorithm we center the viscous update in time, so that the complete update

is as follows:

U∗
j = Un

j −
∆t

∆x
Fn

j +
∆t

∆x
(Dn

j + S̃n
j ) (19)

Un+1
j = Un

j −
∆t

∆x
Fn

j +
1

2

(
∆t

∆x

) (
Dn

j + S̃n
j + D∗

j + S̃∗j
)

. (20)

As discussed in section 2.1, for the PPM scheme we use the adjusted stochastic flux approx-

imation S̃j =
√

2Sj, since the averaging in the time-centering reduces the variance in the

flux to half its original magnitude.

2.3 Variance-preserving third-order Runge-Kutta

Equilibrium tests, presented in detail in the next section, show that neither stochastic version

of the traditional numerical methods discussed above accurately represents the fluctuations

in the LLNS equations. The principal difficulty arises because there is no stochastic forcing

term in the mass conservation equation. Accurately capturing density fluctuations requires

that the fluctuations be preserved in computing the mass flux. Another key observation is

that the representation of fluctuations in the above schemes is also sensitive to the time step,
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with extremely small time steps leading to somewhat improved results. This suggests that

temporal accuracy also plays a significant role in capturing fluctuations. Based on these

observations we have developed a new discretization aimed specifically at capturing fluctua-

tions in the LLNS equations. The method is based on a third order Runge-Kutta temporal

integrator (RK3) combined with a centered discretization of hyperbolic and diffusive fluxes.

The RK3 discretizaton can be written in the following three-stage form:

U
n+1/3
j = Un

j −
∆t

∆x
(Fn

j+1/2 −Fn
j−1/2) (21)

U
n+2/3
j =

3

4
Un

j +
1

4
U

n+1/3
j − 1

4

(
∆t

∆x

)
(Fn+1/3

j+1/2 −Fn+1/3
j−1/2 ) (22)

Un+1
j =

1

3
Un

j +
2

3
U

n+2/3
j − 2

3

(
∆t

∆x

)
(Fn+2/3

j+1/2 −Fn+2/3
j−1/2 ), (23)

where F = −F + D + S.

Combining the three stages, we can write

Un+1
j = Un

j −
∆t

∆x

[
1

6
(Fn

j+1/2 −Fn
j−1/2) +

1

6
(Fn+1/3

j+1/2 −Fn+1/3
j−1/2 ) +

2

3
(Fn+2/3

j+1/2 −Fn+2/3
j−1/2 )

]
.

The stochastic components of the flux, Sn+`
j+1/2 are independent, identically distributed

Gaussian random variables with mean zero and variance σ2 for ` = 0, 1
3
, 2

3
. Substituting this

into the combined update we find that the variance in the flux at j + 1/2 is given by

〈δ(1
6
(S0

j+1/2) +
1

6
(S

1/3
j+1/2) +

2

3
(S

2/3
j+1/2))

2〉

=

(
1

6

)2

〈(δS0
j+1/2)

2〉+

(
1

6

)2

〈(δS1/3
j+1/2)

2〉+

(
2

3

)2

〈(δS2/3
j+1/2)

2〉

=
σ2

2
.

Thus, in the course of the RK3 algorithm, the variance in the flux is reduced to half

its original magnitude, so again we replace Sj+1/2 by S̃j+1/2 =
√

2Sj+1/2, as discussed in

section 2.1, and compute equations (21-23) using F = −F + D + S̃.

However, this treatment does not directly affect the fluctuations in density, since S

does not appear in the continuity equation. We can correct this effect via a special interpo-
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lation scheme: by augmenting the variance to compensate for the density reduction arising

from the temporal averaging, the fluctuations are preserved in the mass flux computation.

We interpolate J (and the other conserved quantities) from cell-centered values:

Jj+1/2 = α1(Jj + Jj+1)− α2(Jj−1 + Jj+2), (24)

where

α1 = (
√

7 + 1)/4 and (25)

α2 = (
√

7− 1)/4. (26)

Then in the case of constant J we have exactly Jj+1/2 = J and 〈δJ2
j+1/2〉 = 2〈δJ2〉, as

desired; the interpolation is consistent and compensates for the variance-reducing effect of

the multi-stage Runge-Kutta algorithm. The interpolation formula is similar to the PPM

spatial construction except in the PPM construction α1 = 7/12 and α2 = 1/12. Tests based

on these alternative weights produced results intermediate to the RK3 scheme and the PPM

scheme. We also considered interpolation of primitive variables but found that interpolation

based on primitive variables led to stable but undamped oscillatory behavior. Finally, the

diffusive terms D are discretized with standard second-order finite difference approximations.

2.4 Boundary Conditions

In sections 3 and 4 we consider test problems for the various PDE algorithms on either

a periodic computational domain, a computational domain bounded by thermal walls, or a

computational domain bounded by infinite reservoirs. Boundary conditions are implemented

using ghost cells. For the periodic and reservoir boundaries, it is straightforward to determine

the ghost cell data.

For the case of thermal walls, in addition to ghost cells we also use a one-sided finite

difference formulation to approximate ux and Tx in the calculation of the diffusive flux. The

treatment of the hyperbolic flux at thermal walls varies by method.
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For thermal wall boundaries in MacCormack, conserved quantities are reflected across

the boundaries of the domain. The temperature in the ghost cells is determined by linear

extrapolation, and the no-flow condition is enforced by setting the velocity terms of the

hyperbolic flux to zero within the ghost cells.

For thermal wall boundaries in PPM, ghost cells are populated by reflecting primitive

variable values across the domain boundaries, and the temperature in the ghost cells is deter-

mined by linear extrapolation. The PPM routine takes as input the cell-centered primitive

variable data and returns a Riemann solution at each cell edge. On the domain boundaries,

we modify these Riemann solutions by enforcing fixed wall temperature (i.e., the pressure

at the wall is taken to be a function of the fixed wall temperature) before computing the

hyperbolic flux across each edge.

For thermal wall boundaries in RK3, conserved quantities are reflected across the

boundaries of the domain and then interpolated onto cell edges. At the domain boundaries we

employ a Riemann solver, which ensures that the boundary treatment respects characteristic

compatibility relations at the physical boundaries. At the physical boundaries, the primitive

variable values derived from the conserved-quantity interpolants are modified to enforce zero

velocity and fixed wall temperature. This vector of primitive variables provides the input

to the Riemann problem on the interior side of the boundary. The input to the Riemann

problem on the exterior side of the boundary is the reflection of the interior input data.

The treatment of reservoir boundaries is similar. However, ghost cells are populated with

reservoir data, wall conditions are not enforced, and the input to the Riemann problem on

the exterior side of the boundary is the reservoir data.

3 Numerical Tests – Equilibrium

This section presents results from a variety of scenarios in which the three schemes described

above were tested. The physical domain is chosen to be compatible with DSMC particle
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Molecular diameter (Argon) 3.66× 108 Molecular mass (Argon) 6.63× 1023

Reference mass density 1.78× 10−3 Reference temperature 273

Sound speed 30781 Specific heat cv 3.12× 106

System length 1.25× 10−4 Reference mean free path 6.26× 10−6

System volume 1.96× 10−16 Time step 1.0× 10−12

Number of cells 40 Number of samples 107

Number of DSMC particles 5265 DSMC collision grid size 3.13× 10−6

Table 1: System parameters (in cgs units) for simulations of a dilute gas in a periodic domain.

simulations; see Table 1 for the system’s parameters and Appendix B for a description of

DSMC. The domain is partitioned into 40 cells of equal size ∆x and hyperbolic and diffusive

stability constraints determine the maximum time step ∆t:

(|u|+ cs)
∆t

∆x
≤ 1, (27)

max

(
4

3

η

ρ
,

κ

ρcv

)
∆t

∆x2
≤ 1

2
, (28)

where the sound speed cs =
√

γP/ρ, η = η(T ), and κ = κ(T ); the overline indicates reference

values (e.g., equilibrium values around which the system fluctuates). For the reference state

(Argon at STP) and a cell width of ∆x ≈ 10−6 cm the time step used was ∆t = 10−12 s.

3.1 Variances at equilibrium

The first benchmark for our numerical schemes is recovering the correct variance of fluctu-

ations for a system at equilibrium. For this initial test problem, we take a periodic domain

with zero net flow and constant average density and temperature. Similar results, not pre-

sented here, were obtained for the case of constant non-zero net flow. The variances are

computed in 40 spatial cells from 107 samples and then averaged over the cells.

Table 2 compares the theoretical variances (see Appendix A) with those measured

in the three stochastic PDE schemes and the DSMC particle simulation. The MacCormack
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and PPM schemes do relatively poor job (9 − 16% error) for the variances of density and

energy. Better PPM results are obtained by decreasing our value of ∆t by a factor of 10,

to 10−13. However, it is not desirable to run simulations at such a small time step. Only

the third-order Runge-Kutta integrator generates the correct variance of density and energy

while advancing with time steps near the stability limit.

Table 2: Variance in conserved quantities at equilibrium (computed

values are accurate to approximately 0.1%).

〈δρ2〉 〈δJ2〉 〈δE2〉
Exact value 2.35× 10−8 13.01 2.87× 1010

MacCormack scheme 2.01× 10−8 13.31 2.61× 1010

Piece-wise Parabolic Method 1.97× 10−8 13.27 2.58× 1010

Runge-Kutta (3rd order) 2.32× 10−8 13.65 2.87× 1010

Molecular simulation (DSMC) 2.35× 10−8 13.21 2.79× 1010

Percentage difference (MacCormack) −14.3% 2.3% −9.3%

Percentage difference (PPM) −16.0% 2.0% −10.3%

Percentage difference (RK3) −1.3% 4.9% −0.1%

Percentage difference (DSMC) 0.0% 1.6% −3.1%

3.2 Spatial correlations at equilibrium

Figures 1–3 depict the spatial correlation of conserved variables, that is, 〈δρjδρj∗〉, 〈δJjδJj∗〉,
and 〈δEjδEj∗〉, where j∗ is located at the center of the domain. These figures show results

computed by the MacCormack, PPM, and RK3 schemes, along with the theoretical values

of the correlations (see Appendix A) and molecular simulation data (see Appendix B). For

the MacCormack and PPM schemes the spatial correlations of density fluctuations and
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energy fluctuations have significant spurious oscillations near the correlation point (see Figs. 1

and 3). All three schemes do well in reproducing the expected correlations of momentum

fluctuations. Figure 4 depicts 〈δρjδJj∗〉, which has a theoretical value of zero since the net

flow is zero; all three schemes correctly reproduce this result.
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Figure 1: Spatial correlation of density fluc-

tuations. Solid line is〈δρiδρj〉 = 〈δρ2〉δK
i,j (see

equations (38, 39)).

Figure 2: Spatial correlation of momentum

fluctuations. Solid line is〈δJiδJj〉 = 〈δJ2〉δK
i,j

(see equations (44, 47)).

3.3 Time correlations at equilibrium

The time correlation of density fluctuations is of interest because its temporal Fourier trans-

form gives the spectral density, which is measured experimentally from light scattering spec-

tra [42, 43]. From the LLNS equations, this time correlation can be written as

〈δρ(w, t)δρ(w, t + τ)〉
〈δρ2(w, t)〉 =

(
1− 1

γ

)
exp{−w2DT τ}+

1

γ
exp{−w2Γτ} cos(cswτ)

+
3Γ−Dv

γ2cs

w exp{−w2Γτ} sin(cswτ) (29)
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Figure 3: Spatial correlation of energy fluctu-

ations. Solid line is〈δEiδEj〉 = 〈δE2〉δK
i,j (see

equations (46, 48)).

Figure 4: Spatial correlation of density-

momentum fluctuations.

where w = 2πn/L is the wavenumber, γ = cp/cv is the ratio of specific heats, DT = κ/ρcv

is the thermal diffusivity, Dv = 4
3
η/ρ is the longitudinal kinematic viscosity, cs is the sound

speed, and Γ = 1
2
[Dv + (γ − 1)DT ] is the sound attenuation coefficient.

In our numerical calculations the density is represented by cell averages ρi, i = 1, . . . ,Mc,

and the time correlation is estimated from the mean of N samples,

〈δρ(w, t)δρ(w, t + τ)〉N =
1

N

N∑

samples

R(t)R(t + τ) (30)

with

R(t) =
1

Mc

Mc∑
i=1

ρi sin(2πnxi/L). (31)

We have

〈δρ(w, t)δρ(w, t + τ)〉 = lim
N→∞

〈δρ(w, t)δρ(w, t + τ)〉N . (32)
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From the above we find the normalization of the theoretical result may be expressed as

〈δρ2(w, t)〉 = 〈R(t)2〉 =
1

M2
c

Mc∑
i=1

Mc∑
j=1

〈δρiδρj〉 sin(2πnxi/L) sin(2πnxj/L)

=
〈δρ2〉
2Mc

. (33)

We restrict our attention to the lowest wavenumber (i.e., n = 1) because for the system

sizes we consider the theoretical result, (29), is not accurate at short wavelengths due to

mean-free-path corrections.

In the left-hand panel of figure 5, we present time correlation results from our equi-

librium problem on a periodic domain. We compare results from the MacCormack, PPM,

and RK3 methods with the theoretical time correlation, equation (29), and with molecular

simulation data (see Appendix A). We find reasonable agreement among all the results, up to

the time when a sound wave has crossed the system (≈ 4× 10−9 seconds). Due to finite size

effects the theory is only accurate for short times but the agreement among the numerical

PDE schemes and DSMC molecular simulation is good.

The right-hand panel of figure 5 shows time correlation results for the equilibrium

problem on a domain with thermal walls rather than periodic boundaries; we find good

agreement for this problem as well, at least for times less than the sound crossing time.

For later times, the time correlation is sensitive to the acoustic impedance of the thermal

wall. For this case, MacCormack under-predicts the correlation at early time while PPM

shows significant deviation near t = 5 × 10−8. Both MacCormack and the RK3 scheme

deviate somewhat from DSMC at late time. Overall, however, the RK3 scheme captures the

temporal correlation better than either of the other two PDE schemes.

4 Numerical Tests – Non-equilibrium

The results from the section above indicate that of the three stochastic PDE schemes, the

third-order Runge-Kutta method (RK3) consistently out-performs the other two schemes.
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Figure 5: Time correlation of density fluctuations for equilibrium prob-

lem, on a periodic domain (left panel) and a domain with specular wall

boundaries (right panel).

In this section we consider two more numerical tests, spatial correlations in a temperature

gradient and diffusion of a standing shock wave, but restrict our attention to the RK3 scheme,

comparing it with DSMC molecular simulations.

4.1 Spatial correlations in a temperature gradient

In the early 1980’s, a variety of statistical mechanics calculations predicted that a fluid

under a non-equilibrium constraint, such as a temperature gradient, would exhibit long-

range correlations of fluctuations [44]. Furthermore, quantities that are independent at

equilibrium, such as density and momentum fluctuations, also have long-ranged correlations.

These predictions were qualitatively confirmed by light scattering experiments [45], yet the
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Figure 6: Spatial correlation of density and mo-

mentum fluctuations for a system subjected to

a temperature gradient. Compare with Fig. 4.

effects are subtle and difficult to measure accurately in the laboratory. Molecular simulations

confirm the predicted correlations of non-equilibrium fluctuations for a fluid subjected to a

temperature gradient [46, 23] and to a shear [47].

We consider a system similar to that of section 3.3 but with a temperature gradient.

Specifically, the boundary conditions are thermal walls at 273K and 819K. Figure 6 shows

the correlation of density and momentum fluctuations measured in an RK3 calculation and

by DSMC simulations. The two sets of data are in good agreement and are in agreement

with earlier work on this problem [46, 23]. The major discrepancy is the under-prediction

of the negative peak correlation near j∗. Extensive tests suggest that this effect is hard

to capture with a continuum solver because of the tension between variance reduction and

spatial correlations in computing the mass flux at cell edges from cell-centered data.

4.2 Random Walk of a Standing Shock

In our final numerical study we consider the random walk of a standing shock wave due to

spontaneous fluctuations. Shock diffusion is well-known in other particle simulations, such
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System length 5× 10−4 Reference mean free path 6.26× 10−6

System volume 7.84× 10−16 Time step 1.0× 10−12

Number of cells 160 Mach number 2.0

RHS mass density 1.78× 10−3 LHS mass density 4.07× 10−3

RHS velocity -61562 LHS velocity -26933

RHS temperature 273 LHS temperature 567

RHS sound speed 30781 LHS sound speed 44373

Table 3: System parameters (in cgs units) for simulations of a standing shock, Mach 2.0

as shock tube modeling by DSMC, which must correct for the drift when measuring profiles

for steady shocks. [48] The general problem has been also been analyzed for simple lattice

gas models [49, 50, 51, 52, 37].

Mass density and temperature on the right-hand side of the shock are given the same

values as in our equilibrium problem; values of density and temperature on the left-hand side

are derived from the Rankine-Hugoniot relations. The velocity on both sides of the shock

are specified to satisfy the Rankine-Hugoniot conditions and to make the unperturbed shock

wave stationary in the computational domain. We consider three different shock strengths,

Mach 2, Mach 1.4, and Mach 1.2 (see table 3). The boundary treatment consists of infinite

reservoirs with the same states as the initial conditions. For this test problem we use a

longer computational domain, in order to capture (unlikely) shock drift of several standard

deviations.

Here we focus on the variance of the shock location as a function of time. We define

a shock location for density, σρ(t) by fitting a Heaviside function to the integrated density,

i.e., ∫ σ(t)

−L/2

ρL dx +

∫ L/2

σρ(t)

ρR dx =

∫ L/2

−L/2

ρ(x, t) dx . (34)
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Solving for σρ(t) gives

σρ(t) = L
ρ̄(t)− 1

2
(ρL + ρR)

ρL − ρR

(35)

where ρ̄ = L−1
∫ L/2

−L/2
ρ(x, t) dx is the instantaneous average density. The shock location for

pressure, σP , is analogously defined. We estimate σρ(t) and σp(t) as functions of time from

ensembles of 4000 simulations. For the PDE simulations, we initialize with discontinuous

shock profiles. One would expect the shock location to fluctuate with a diffusion similar to

that of a simple random walk [51], so averaging over ensembles from the same initial state

we would expect to find

〈δσ2
ρ〉 ≈ 2Dρt and 〈δσ2

p〉 ≈ 2Dpt (36)

with shock diffusion coefficients, Dρ and Dp, that depend on shock strength. Note that this

expression for the variance is not accurate at very short times (due to transient relaxation

from the initial state) or at very long times (due to finite system size).

Figure 7 shows results for the variance in the shock position from an ensemble of runs

versus time. After the initial transients, the slopes are constant with the strongest shocks

exhibiting the least drift (D ∼= (Ma − 1)−1) and with σρ and σP giving similar diffusion

coefficients. DSMC data is initially noisy so it has different initial transients and “diffuses”

farther than the PDE. However, after the transients, the DSMC and the RK3 simulations

have essentially the same slope, as a function of Mach number. This indicates that the

third-order Runge-Kutta scheme is accurately capturing the shock-drift random walk.

5 Summary and Concluding Remarks

In this paper we develop and analyze several finite-volume schemes for solving the fluctuat-

ing Landau-Lifshitz compressible Navier-Stokes equations in one spatial dimension. Methods
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Figure 7: Variance of shock location for mass density profile (left panel, 〈δσρ(t)
2〉) and

pressure profile (right panel, 〈δσP (t)2〉). Estimated variances (4000-run ensembles) versus

time t for a deterministically steady shock of Mach number 1.2, 1.4, or 2.0. Solid lines are

for RK3, dashed lines are from DSMC molecular simulations.

based on standard CFD discretizations were found not to accurately represent fluctuations in

an equilibrium flow. We have introduced a centered scheme based on interpolation schemes

designed to preserve fluctuations combined with a third-order Runge-Kutta (RK3) tem-

poral integrator that was able to capture the equilibrium fluctuations. Further tests for

non-equilibrium systems confirm that the RK3 scheme correctly reproduces long-ranged cor-

relations of fluctuations and stochastic drift of shock waves, as verified by comparison with

molecular simulations. It is worth emphasizing that the ability of continuum methods to ac-

curately capture fluctuations is fairly sensitive to the construction of the numerical scheme.

Minor variations in the numerics can lead to significant changes in stability, accuracy, and

behavior.

The work discussed here suggests a number of additional studies. Further analysis

is needed on the treatment of thermal and reservoir boundary conditions. The methods

here can also be extended to three dimensions (for which the stochastic stress tensor is

more complex) and we can include concentration as a hydrodynamic variable to allow the
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methodology to be applied to a number of other flow problems. Finally, we are integrating

our new stochastic PDE solver into our existing Adaptive Mesh and Algorithm Refinement

(AMAR) programs [53]. A stochastic AMAR simulation will not only model hydrodynamic

fluctuations at multiple grid scales but will, by incorporating DSMC simulations at the finest

level of algorithm refinement, also capture molecular-level physics.
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Appendix A: Equilibrium Fluctuations

For infinite systems, at thermodynamic equilibrium both conserved and hydrodynamic vari-

ables are spatially uncorrelated at equal times. For example,

〈δρi(t)δρj(t)〉 = 〈δρ2〉δK
i,j. (37)

For conserved variables there is a finite size correction, specifically,

〈δρi(t)δρj(t)〉 = (1−M−1
c )〈δρ2〉δK

i,j −M−1
c 〈δρ2〉(1− δK

i,j) (38)

for i, j = 1, . . . , Mc, where Mc is the number of cells in the system. The variances are

well-known from equilibrium statistical mechanics (§112, [54]).

The variance of mass density depends on the compressibility (i.e., the equation of

state) of the fluid. In general,

〈δρ2〉 = ρ2 〈δN2
c 〉

N
2

c

(39)
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where N c and 〈δN2
c 〉 are the mean and variance of the number of particles in a cell. We

calculate N c = ρVc/m, where Vc is the volume of a cell and m is the mass of a particle. For

an ideal gas Nc is Poisson distributed so 〈δN2
c 〉 = N c and 〈δρ2〉 = ρ2/N c. The more general

result is 〈δN2
c 〉 = αT ρkBT N c/m where αT is the isothermal compressibility.

The variances of fluid velocity and temperature in a cell are

〈δu2〉 =
kBT

ρVc

=
C2

T

N c

and (40)

〈δT 2〉 =
kBT

2

cvρVc

=
C2

T T

cvN c

, (41)

where CT =
√

kBT/m is the thermal speed (and the standard deviation of the Maxwell-

Boltzmann distribution). The covariances are 〈δρ δu〉 = 〈δρ δT 〉 = 〈δu δT 〉 = 0.

The variances and covariances of the mechanical densities at equilibrium are

〈δρδJ〉 = ρJ∆ρ (42)

〈δρδE〉 = ρE∆ρ (43)

〈δJ2〉 = J
2
∆ρ + ρ2C2

T ∆u (44)

〈δJ δE〉 = J E∆ρ + J ρC2
T ∆u (45)

〈δE2〉 = E
2
∆ρ + J

2
C2

T ∆u + c2
vρ

2T
2
∆T (46)

where ∆ρ = 〈δρ2〉/ρ2, ∆u = 〈δu2〉/C2
T , and ∆T = 〈δT 2〉/T 2

. For a dilute gas ∆ρ = ∆u =

1/N c, and ∆T = 2/(3N c). Again, corrections must be made for conserved quantities in the

case of a finite domain:

〈δJi(t)δJj(t)〉 = (1−M−1
c )〈δJ2〉δK

i,j −M−1
c 〈δJ2〉(1− δK

i,j), (47)

〈δEi(t)δEj(t)〉 = (1−M−1
c )〈δE2〉δK

i,j −M−1
c 〈δE2〉(1− δK

i,j). (48)
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Appendix B: DSMC Simulations

The algorithms presented here for the stochastic LLNS equations were validated by com-

parison with molecular simulations. Specifically, we used the direct simulation Monte Carlo

(DSMC) algorithm, a well-known method for computing gas dynamics at the molecular scale;

see [55, 56] for pedagogical expositions on DSMC, [48] for a complete reference, and [57] for

a proof of the method’s equivalence to the Boltzmann equation. As in molecular dynamics,

the state of the system in DSMC is given by the positions and velocities of particles. In each

time step, the particles are first moved as if they did not interact with each other. After

moving the particles and imposing any boundary conditions, collisions are evaluated by a

stochastic process, conserving momentum and energy and selecting the post-collision angles

from their kinetic theory distributions. DSMC is a stochastic algorithm but the statistical

variation of the physical quantities has nothing to do with the “Monte Carlo” portion of the

method. The equilibrium and non-equilibrium variations in DSMC are the physical spectra

of spontaneous thermal fluctuations, as confirmed by excellent agreement with fluctuating

hydrodynamic theory [34, 23] and molecular dynamics simulations [58, 24].

The simulated physical system is a dilute monatomic hard-sphere gas in a rectangular

volume with periodic boundary conditions in the y and z directions. The boundary conditions

in the x direction are either periodic, specular (i.e., elastic reflection of particles), or a pair

of parallel thermal walls. The physical parameters used are presented in Table 1. Samples

are taken in forty rectangular cells perpendicular to the x-direction.
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